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In the last lecture we saw controllability and observability ellipsoids. In this lecture we want to com-
bine these two concepts to see what states are both easy to control and observe simultaneously. This
will lead us to two interesting applications: System identification and Model reduction.

1 Change of coordinates

A linear discrete-time system can be modeled as

xt+1 = Axt +But

yt = Cxt
(1)

where xt ∈ Rn, ut ∈ Rm and yt ∈ Rp are state vector, control input and measured output,
respectively. Matrices A, B and C are of compatible sizes. In many practical applications, the state
vector cannot be directly observed. In fact, the system model is so complicated (and sometimes even
unknown) that we prefer to treat it as a black box, i.e., we give it a set of inputs u = {u0, u1, . . . , un}
and get a set of outputs y = {y0, y1, . . . , yn} and we want to identify the corresponding system,
i.e., estimate the matrices A, B and C in equation (1). In this section, we show that given a set of
inputs and its corresponding set of outputs, one cannot find a unique mapping between the input
and the output. In other words, the state vector x or even its size is not unique.

Let T ∈ Rn×q be an invertible matrix such that

xt = Tzt. (2)

Substituting this equation in the equation (1) we get:

zt+1 = (

Anew︷ ︸︸ ︷
T−1AT)zt + (

Bnew︷ ︸︸ ︷
T−1B)ut

yt = (CT︸︷︷︸
Cnew

)zt.
(3)

So, we see that we have the exact same input/output mapping, but with a new state vector z and
new system matrices such that

(A,B,C) → (T−1AT,T−1B,CT) (4)

This gives rise to two interesting questions;

• How can we identify a realization of a system (i.e., find A,B,C) using the set of inputs and
corresponding outputs?
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• Given a system, how can we use this mapping to decrease the system’s order (i.e., truncate
the state vector) to have a less complicated model and vice versa?

In the remaining of this lecture we try to tackle these questions. Before that, we want to investi-
gate the effect of coordinate change on observability, controllability, impulse response and transfer
function of a given system.

1.1 Observability and controllability

Recall we defined the controllability matrix as

C =
[
B AB A2B · · ·

]
(5)

using mapping (4) we can write

Cnew =
[
T−1B T−1AB T−1A2B · · ·

]
= T−1C.

Likewise, for the observability matrix

O =


C
CA
CA2

...

 (6)

so

Onew =


CT
CAT
CA2T

...

 = OT.

Controllability and observability Gramians were defined as P = CCT and Q = OTO. Using the
new observability and controllability matrices we just derived, we have

Pnew = CnewCT
new = T−1PT−T

Qnew = OT
newOnew = TTQT.

Note that the eigenvalues of the new Gramians are not the same as the old ones, therefore, con-
trollability and observability ellipsoids change when mapping the system. However, the rank of
these matrices (whether the system is controllable or observable) is not affected by the change of
coordinates.

1.2 Impulse response

We set u0 = Im, x0 = 0n and ut = 0m for all t ≥ 1 and using system equations (1) compute the
output

y0 = Cx0 = 0p

y1 = CB

y2 = CAB

y3 = CA2B

. . . .
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We do the same for the system (3) by letting z0 = 0q and the same input. So, we get

y0 = CTz0 = 0p

y1 = CTT−1C = CB

y2 = CAB

y3 = CA2B

. . . .

So, the impulse response, as expected, is not affected by the change of coordinates. The matrices
CAkB for k = 0, 1, . . . are called the Markov parameters of the system.

1.3 Transfer function

Applying the shift operator Z (the equivalent of Laplace transform L) on the equation of the system
in (1) we get the transfer function

G(z) = C(zI−A)−1B

doing the same for the system in (4) we have

Gnew(z) = CT(zI−T−1AT)−1T−1B

factoring out a T from the left side and a T−1 from the right side of the the parenthesis, straight-
forwardly we get

G(z) = Gnew(z).

So, the transfer function is invariant of the mapping matrix T.

2 Hankel operator

For a given system, we run an experiment, which consists of two steps:

1. Apply inputs {. . . ,u−3,u−2,u−1} starting from x−∞ = 0 so the system is driven to x0.

2. At time t = 0 stop applying inputs and start measuring the outputs {y0,y1,y2, . . . }.

Now we try to find the input/output map. Using (1) we can write

y0 = Cx0

= C(Ax−1 +Bu−1)

= CBu−1 +CA(Ax−2 +Bu−2)

= CBu−1 +CABu−2 +CA2(Ax−3 +Bu−3)

...

=

∞∑
i=1

CAi−1Bu−i
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likewise, for yk = Cxk = CAkx0 we can write

yk =
∞∑
i=1

CAk+i−1Bu−i.

As a result, we can write the input/output mapping as
y0

y1

y2

...

 =


CB CAB CA2B . . .
CAB CA2B CA3B . . .
CA2B CA3B CA4B . . .

...
...

...
. . .


︸ ︷︷ ︸

H ≜ Hankel operator


u−1

u−2

u−3

...

 . (7)

A Hankel matrix is a matrix whose anti-diagonal entities are the same (a matrix with the same
property but for the diagonal elements is called a Toeplitz matrix). Plus, H is composed of the
Markov parameters so is invariant under coordinate changes.

Considering the definitions of observability and controllability matrices in (5) and (6), we can
decompose the Hankel matrix as

H = OC (8)

which was expected, as the Hankel matrix maps the output to the input, controllability matrix
maps the input to the state vector and observability matrix maps the state vector to the output.
We can represent this using the diagram:

Past inputs
{. . . ,u−2,u−1}

Future outputs
{y0,y1,y2, . . . }

Present
state x0

H

O C

Using equations (8), (5), (6) and the mapping in (4) it is straightforward to check the Independence
of H from T. From this factorization of H it is obvious that rank(H) = n. Two important
applications of the Hankel operator are model reduction and system identification, which are to be
discussed in what follows.

3 Balanced realization

Sometimes there are some state variables in a system that are hard or even impossible to either
control or observe. For example, when there is an unstable element in the system (e.g., a rotating
disk with an ever-increasing angular velocity), if we are not able to control or observe it, there is no
point in including it in the state vector. The problem that we are trying to solve here, is to detect
those states and, in the next step, remove them from the state vector.

As we saw in the previous lecture, from the controllability ellipsoid of a system we could detect
states that are easily controllable (in the direction of the major axis of the ellipsoid) and vice versa.
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We had the same property for the observability ellipsoid, with the most observable state in the
direction of the major axis. In general, these two ellipsoids are totally different, i.e., the states that
are easy to control might be hard to observe! It is desirable to find the state variables that are both
easily controllable and observable and give them higher priority compared to other states. Even we
can discard some states that are costly or hard to observe or/and control. As we saw in Section 1.1,
the controllability and observability Gramians transform if we change coordinates.

It turns out that a change of coordinates T exists that makes the controllability and observability
Gramians match, and become diagonal! In other words,

Pnew = Qnew = Σ. (9)

We choose Σ to be the matrix of singular values of the Hankel matrix of the system. If we look at
the eigenvalues of PQ, we have

λ(PQ) = λ(CCTOTO) = λ((OC)(OO)T) = λ(HHT) = σ(H)2. (10)

So, the eigenvalues of PQ are squared singular values of the Hankel matrix

σ(H) =
√

λ(PQ).

Additionally, we know that the eigenvalues of PQ and P1/2QP1/2 are the same and equal to their
singular values, as these matrices are symmetric and positive definite. So, as we saw in equation
(10) the singular values of P1/2QP1/2 are squared singular values of the Hankel matrix. As a result,
if Σ is the diagonal matrix containing singular values of the Hankel matrix, we can write the SVD
of P1/2QP1/2 as

P1/2QP1/2 = UΣ2UT (11)

multiplying by Σ−1/2UT(. . . )UΣ−1/2, we obtain

Σ−1/2UTP1/2QP1/2UΣ−1/2 = Σ. (12)

As discussed in Section 1.1, we have
Qnew = TTQT.

Comparing this equation with equations (9) and (12) we can define

T ≜ P1/2UΣ−1/2. (13)

This definition of T is based on the fact that Qnew = Σ. For Pnew we also have

Pnew = T−1PT−T = Σ1/2UTP−1/2PP−1/2UΣ1/2 = Σ

This checks out! So, we have found a transformation T that makes the Gramians equal and diagonal.
Since Σ is diagonal, the resulting ellipsoids will always be aligned with the axes such that z1 is the
most controllable and observable state and zq is the least controllable and observable state.

To sum up, for any given system with x as its state vector, and A,B and C matrices, we can find
a new state vector z = T−1x with new matrices Anew,Bnew and Cnew such that the controllability
and observability ellipsoids match and in the new state vector states are placed in accordance with
their controllability and observability properties, with the most controllable and observable state
coming first. The Matlab command to get a balanced realization of a system is balreal.
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Balanced truncation. After obtaining a balanced realization of a given system, we can perform
model reduction. There are several ways to do that, including:

• Petrov—Galerkin truncation. The easiest way of model reduction is to discard k last
states. This method is called Petrov—Galerkin truncation approach. However, the point
here is that the states are coupled, i.e., in general Anew is not diagonal, so it is not the best
practice to just remove the k last states. Predictably, the truncated system will not match
the steady-state response of the original system. However, it will do a good job matching the
transient response.

• DC matching. If we want our reduced system’s steady-state response to match that of the
original system, we can use this method. There are several methods to do DC matching.
Although this method preserve the steady-state response of the original system, there is no
guarantee that it will also match the transient response. The Matlab command for this family
of methods is

balred(SYS,ORDER) % calculates an ORDER order approximation of the system

using DC matching method

A numerical example. Consider the following system of the form (1)

xt+1 =

[
0.5 −0.1
0.4 −0.1

]
xt +

[
1
3

]
ut (14a)

yt =
[
4 0

]
xt. (14b)

We can find Gramians:

P = dlyap(A,B*B')

Q = dlyap(A',C'*C)

P =

1.0499 3.0276

3.0276 9.0159

Q =

20.8600 -0.9639

-0.9639 0.1912

Now, we can plot controllability and observability ellipsoids; see Fig. 1. Obviously, the states that are
easy to control are hard to observe and vice versa. We can calculate the balanced realization:

[U,S2,~] = svd(sqrtm(P)*Q*sqrtm(P));

T = sqrtm(P)*U*inv(sqrtm(sqrtm(S2)));

Ab = T\A*T;

Bb = T\B;

Cb = C*T;
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Figure 1: Controllability and observability ellipsoids for the example of Eq. (14). The
directions that are easy to control are also (roughly) difficult to observe, and vice versa.

The balanced realization of the system becomes

xt+1 =

[
0.2245 0.2223
0.2223 0.1755

]
xt +

[
−1.997
0.1097

]
ut (15a)

yt =
[
−10.997 0.1097

]
xt (15b)

for which we can compute new Gramians

Pb = dlyap(Ab, Bb*Bb');

Qb = dlyap(Ab', Cb'*Cb);

which results in

Pnew =

[
4.2114 0

0 0.2271

]
Qnew =

[
4.2114 0

0 0.2271

]
.

We can see that the new Gramians are the same. We can also plot the new controllability and
observability ellipsoids.

Finally, we can perform a truncation to see how the reduced system (with only one state) compares
to the original system (with two states). We used both methods presented in previous sections: trun-
cation and singular perturbation (DC match). The first has better agreement for initial transients,
while the second has better steady-state agreement. Here is a plot comparing the performance of
the original system and both 1st order approximations.

7



-2 -1.5 -1 -0.5 0 0.5 1 1.5 2

-1.5

-1

-0.5

0

0.5

1

1.5
controllability and observability ellipsoids

controllability: fz j z>P!1z 5 1g
observability: fz j z>Q!1z 5 1g

Figure 2: Controllability and observability ellipsoids for the example of Eq. (15). This
is a balanced realization so controllability and observability ellipsoids coincide perfectly
and are aligned with the axes. The easiest direction to control and observe is x1.

Figure 3: Step and impulse responses of the system Eq. (14) using different model
reduction approaches.
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4 System identification

The second application of Hankel operator is system identification. In this application, we do not
know the system, instead we have a set of inputs and its corresponding set of outputs. There are
several methods of identifying a system. One of the most famous algorithms is called Ho-Kalman
method. Comparing the Hankel matrix from Eq. (7) to the Markov parameters of the system with
an impulse input, we observe that the first column of the Hankel matrix is actually the sequence of
the outputs. The second column is the first column shifted up one step. As a result, we have

Ĥ =


y1 y2 y3 . .

.

y2 y3 . .
.

y3 . .
.

. .
.

 . (16)

Now we get to choose the size of the state vector. To this end, we compute the SVD decomposition
of Ĥ and keep the most significant singular values. We can discard those close to zero. Now, we
have the dimension of the state vector. Using (8) we decompose the Hankel matrix to controllability
and observability matrices. This decomposition is not unique, so we can choose any decomposition
with compatible matrix sizes. Now, we have Ô and Ĉ. The first block of the controllability matrix
is B (see (5)) and the first block of the observability matrix is C (see (6)), so, from Ô and Ĉ we
have Ĉ and B̂. To compute Â we form the shifted Hankel matrix. To do that, we remove the first
measurement from the original Hankel matrix in (16)

Ĥ↑
=


y2 y3 y4 . .

.

y3 y4 . .
.

y4 . .
.

. .
.

 . (17)

The relation between the shifted Hankel matrix and controllability and observability matrices is
given by

Ĥ↑
= OAC.

So, we can obtain an estimate of A using the following equation

Â = Ô†Ĥ↑Ĉ†
. (18)

The three matrices Â, B̂ and Ĉ represent an n-dimensional realization of the system obtained
entirely from the input-output data.
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